(216).Start a Biopesticide manufacturing Unit | ||||||||||||||||||||||||||||||||||||
1. Introduction Pest problem is one of the major constraints for achieving higher production in agriculture crops. India loses about 30% of its crops due to pests and diseases each year. The damage due to these is estimated to be Rs.60,000 crores annually. The use of pesticides in crop protection has certainly contributed for minimising yield losses. The pesticides, which are needed to be applied carefully, only when the threshold limits of the pest population is exceeded. However, quite often the indiscriminate and unscientific use of pesticides has led to many problems, such as pests developing resistance, resurgence of once minor pest into a major problem besides environmental and food safety hazards. 1.2. The problem of insect-pest is acute in case of all the crops and especially so in case of commercial crops. The use of insecticides and pesticides have increased manifolds during the past 3 - 4 decades with the introduction of intensive cropping. The average consumption of pesticides in India is about 570 gms per ha. as compared to developed countries like Japan, Thailand and Germany where the consumption rate is 11 kg, 17 kg and 3 kg per ha, respectively. Though the average quantum of pesticides usage in India is low, the damage caused due to their indiscriminate usage and poor quality maintenance is alarming. Interms of value, much of the pesticide application is accounted for by a few crops. For example, cotton, paddy and vegetable crops account for 80% of the value of pesticides applied in India. 1.3. Pesticides or chemicals are meant to control harmful pests such as insects, nematodes, diseases, weeds etc. However, excessive use of pesticides not only leave residues in soil, water and air but also have adverse effects on the non target organisms such as pollinators, parasitoids, predators and wild animals. This has adversely affected the ecological balance resulting in pest resurgence, development of resistance in the pest species and environmental pollution. Development of pest resurgence and resistance has resulted in high cost of production and low income especially to cotton farmers in AP, Maharashtra. 1.4. In view of the several disadvantages associated with the unscientific use of pesticides in agriculture, there is an urgent need for minimising the use of chemical pesticides in the management of insect pests. Growing public concern over potential health hazards of synthetic pesticides and also steep increase in cost of cultivation/low profit making by farmers has led to the exploration of eco-friendly pest management tactics such as Integrated Pest Management (IPM). IPM aims at suppressing the pest species by combining more than one method of pest control in a harmonious way with least emphasis on the use of insecticides. In simple terms "IPM is the right combination of cultural, biological and chemical measures which provides the most effective, environmentally sound and socially acceptable methods of managing diseases, pests and weeds". The major components of IPM are prevention, observation and intervention. The IPM seems to be the only answer to counter some of the major pests of crops, which have become unmanageable in recent years. The success of IPM largely depends upon conservation of naturally occuring bio control agents. | ||||||||||||||||||||||||||||||||||||
2. Importance of Bio-pesticides 2.1. In nature every ecosystem exists in a balance. Growth and multiplication of each organism depends on the food-chain, its predetors, parasites, etc. In biological control system, these interrelations are exploited. The natural enemy of a pest, disease or weed is selected, its biology is studied for mass multiplication and utilize the same to check the target pest. They are also specific in their action and perish once their feed (i.e. the pest) is exhausted. Thus they are based on natural principles, do not leave any residue, safe and economical. 2.2. Among the alternatives, biological control of pests is one of the important means for checking pest problems in almost all agro-ecological situations. Bio pesticides are living organisms which can intervene the life cycle of insect pests in such a way that the crop damage is minimized. The agents employed as biopesticides, include parasites, predetors and disease causing fungi, bacteria and viruses, which are the natural enemies of pests. Further, they complement and supplement other methods of pest control. Utilisation of naturally occurring parasites, predators and pathogens for pest control is a classical biological control. On the other hand, these bio agents can be conserved, preserved and multiplied under Laboratory condition for field release. Once these bio-agents are introduced in the field to build their population considerably, they are capable of bringing down the targeted pest' population below economic threshold level (ETL). However, the crux lies in their mass production and application at the appropriate time. 3. Major advantages of bio pesticides Bio-pesticides are preferred over chemical pesticides for the following reasons:
| ||||||||||||||||||||||||||||||||||||
4. Status of bio pesticide use in India 4.1. Last decade has witnessed a tremendous breakthrough in this aspect, especially on standardization of production techniques of Trichoderma, Gliocladium, Paecilomyces, Pseudomonas, Trichogramma, NPV and Bacillus to use them against many insect pests and diseases. 4.2. There are a number of instances where bio control agents have been successfully employed in India. Some examples of these are given below :
4.3. The popularity of biopesticides has increased in recent years, as extensive and systematic research has greatly enhanced their effectiveness. Also, techniques for the mass production, storage, transport and application of biopesticides have been improved in recent years. 5. Scope for Commercial Production of Biopesticides Though there are about 140 biopesticide production units existing in the country as on today, they are able to meet the demand of only less than 1% of cropped area. There exists a wide gap, which can only be bridged by setting up of more and more units for production of biopesticides. This requires large scale investment and private participation. Some of the local small scale industries have already started production and marketing of Trichoderma viride (against few fungal diseases) and Trichogramma (against sugarcane early shoot borer). There is a scope to enhance production and use of biological control agents in the days to come as the demand is on the increase every year. 6. Location of Biopesticide Units In order to achieve optimum results, care needs to be taken to set up biopesticide facilities in areas which have appropriate climatic conditions. The production of Biopesticides requires controlled climatic conditions. Temperature control is less costly in locations where there is no extreme conditions. Besides the climatic conditions, the proximity of the location to the market is also important. However, care must be taken that the production facilities are set up at least a quarter of a mile away from farming areas, so as to prevent the contamination of production facilities by insecticides from the farming areas. Also, as air pollution can damage biopesticides, the production should be located away from industrial and urban areas. 7. Technology Based on a detailed study conducted by NABARD in Karnataka, the following two model projects are standardized by grouping similar infrastructure requirements. This will increase the efficiency of all input material and will help to run the unit without any lean period. The model one is developed in the area of mass production of predetors and parasites where as the model two is for the multiplication of viral and fungal based products. The technical details in brief for production of selected bio-agents are given in Annexure-I. | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
go to top | ||||||||||||||||||||||||||||||||||||
The technology used were indigenous and the scientific aspects of production were standardised by ICAR Research Institutes and State Agricultural Universities. Machinaries and laboratory equipments are available from various manufacturers and are of BIS standards. 8. Objectives of Biopesticide Project Models
9. Basic requirements for establishment of Biopesticide units Based on the field visits to bio-control production units and in line with the technology and objective of biopesticides production, various facilities required for the successful implementation of such projects are indicated below: 9.1 Land Land is required for construction of culture and rearing rooms, processing room, laboratory, office etc. In the present models, we have assumed only rented buildings, hence no land cost has been considered except for poly house. 9.2 Building and civil works Biopesticides production involves rearing of insects. Hence, the basic infrastructure to be created includes only the civil structures built in such a way as to provide environmental conditions suitable for rearing of insects. The production unit has to be located away from industrial unit to avoid pollution problems. For the proposed installed capacity, an estimated built up area of about 1000 sq ft is required for model-I (mass production of Trichogramma, Chrysoperla and Cryptolaemous beetles) & for Model-II (production of NPV, Trichoderma and pheromone lures) about 2400 sq.ft. area is required. Other utilities required are power, water and vehicle. Among others, the civil structure may be designed to have separate room for diet preparation, corcera culture, egg production, host culture etc. The host culture room for NPV production should be kept at a distance with proper hygiene and entry may be restricted in such a way to prevent any contamination. In other words, one should not enter host culture room after visiting a facility, where NPV is extracted from dead infected larvae. 9.3 Plant and Machinery There is no requirement of heavy plant and machinery. Racks, trays and other facilities are required for rearing insects. Apart from this centrifuge, mixers and some fabricated equipments for insect collection and rearing are required. For production of Trichoderma fermentors, laminar flow apparatus etc. are required. All the machinery required are locally manufactured. 9.4 Raw material For rearing of insects special diet is required which comprises of pulses, vitamins, antibiotics etc. For production of Trichoderma molasses-yeast medium, is required. All these materials are available locally. 9.5 Water The water requirement is mainly for feed preparation, washing, cleeaning, drinking etc.. Water quality should be tested to establish the suitability. 9.6 Power Power supply is essential for bio-pesticide units. Electricity charges under recurring cost are considered in the models. 9.7 Manpower Production of bio-pesticides required skilled manpower. There is need for a number of labourers at each stage of production. The project is labour intensive. The manpower requirement is as under: | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
10. Scale of production These biopesticides can be produced on a small or large scale. Small scale production is particularly suitable to village or community level cooperatives, which can produce and distribute these for local use. As the production technology of some of these agents (particularly Trichogramma) is relatively simple, the local farmers/SHGs can be trained to undertake the production. Medium and large scale production can be undertaken by firms, sugar mills cooperatives engaged in the manufacture and distribution of agro-chemicals. Foe example, fertilizer companies, which already possess sufficient in-house technological expertise and marketing resources, are ideally suited for producing biopesticides on a large scale. Similarly, seed companies are particularly well placed for undertaking the production and marketing of Trichoderma. The installed capacities of the model projects are given in para 13. 11. Market Potential Considering the negative effects of indiscriminate case of pesticides, importance for organic farming and promotion of sustainable farming practices it is estimated that there will be further scope for new units, particularly in the states of Maharashtra, Gujarat, Rajasthan, Madya Pradesh, Tamil Nadu, AP, UP, West Bengal and Karnataka, where crops such as sugarcane, pulses, cereals and vegetable crops are grown in large scale. The National Integrated Pest Management Workshop, 1992 estimated the gross demand for a few biopesticides which is given below: | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
At present, in some states, state government is purchasing the product from the private parties and selling it to the individual farmers at a subsidized rate. 12. Regulatory measures As the bio-control agents are living organisms, it is very important to have effective regulatory measures. The quality control of commercial bioagents must be strictly enforced by the Government. In this connection, the Directorate of Plant Protection Quarantine and Storage, Department of Agriculture and Cooperation, Ministry of Agriculture, GOI have issued guidelines/data requirements for registration of bio-pesticides in the country. As per this, all the units have to meet the Indian standards and technical specifications to be eligible for registration under the Insecticides Act, 1968. 13. Bio-pesticides Registration At present, Bacillus thuringensis, neem based formulations, microbial pesticides like fungi, NPV etc., are included in the schedule of Insecticides Act, 1968. This ensures the quality of bio-pesticides at farmers level. The standard parameters, protocols for data generation, guidelines for registration are prepared and circulated to prospective entrepreneurs by MoA. Now as such, any person dealing with biopesticides without registration is ill-legal.Accordingly, registration cost is included for Model 2. 14. Project Details 14.1 Unit Size The unit size of the models in brief are given below: | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
14.2 Financial programme of the models The summary of financial programme is given below : (amount in Rs.) | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
The details of project cost and cost of production (recurring cost) are given inAnnexures II - III and IX -X for Model- 1 and 2 respectively. 14.3 Economics of the project Based on the various techno-economic parameters (Annexure IV & XI), income and expenditure have been arrived for the models. Further, based on the cash flow, financial parameters and repayment schedule have been worked out to establish the bankability of the project. (Annexures V, VI & VII for model 1 and Annexures XII, XIII & XIV for model 2) 14.4 Financial analysis The cash flow statement covering the Benefit Cost Ratio (BCR), Net Present Worth (NPW) and Internal/financial rate of return (IRR/FRR) have been worked out for the project. Normally the BCR should be greater than 1, NPW should be positive and IRR should be greater than 15%. | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
The detailed financial analysis have been given in Annexures (VIII & XV). 15. FINANCIAL ASSISTANCE The projects on manufacturing biopesticide products would be considered for refinance support by National Bank. Therefore, all participating banks may consider financing this activity subject to their technical feasibility, financial viability and bankability. 16. LENDING TERMS AND OTHER REQUIREMENTS 16.1 Margin Money The promoters/company should normally meet 25% of the project cost out of their own resources. 16.2 Interest Rate Interest rate will be determined by RBI/NABARD from time to time. However, at present banks may decide interest rate. 16.3 Security As stipulated by the RBI. 16.4 Repayment Period Depends upon the gross surplus generated. In the models, we considered 7 years as repayment period with one year grace. 16.5 Refinance Assistance As per the existing policy, NABARD provides refinance assistance @ 90% of bank loan. However, it may vary from time to time. 17. CHECK LIST A check list of various points to be considered (for both models) for feasibility of the project is appended (Annexure XVI). | ||||||||||||||||||||||||||||||||||||
go to top | ||||||||||||||||||||||||||||||||||||
Annexure I Technical Aspects of Biopesticides | ||||||||||||||||||||||||||||||||||||
1. What are Biopesticides Bio pesticides are living organisms which can intervene the life cycle of insect pests in such a way that the crop damage is minimized. The agents employed as biopesticides are parasites, predetors, fungi, bacteria and viruses which are natural enemies of pests. These bio agents can be conserved, preserved and multiplied under laboratory condition for field release. 2. Major types of bio-agents available for commercial production There are different types of bio-agents which can be commercially mass produced for large scale distribution among the farmers for control of insect pests. They are: | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
3. Field efficacy of biopesticides Field efficacy trials have been conducted by State Agricultural Universities and ICAR Research Institutes/Stations to know the extent of pest control by application of biopesticides. The percentage of pest control achieved for selected bio-control agents is as under: | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
4. Essential characteristics of effective biocontrol agents
| ||||||||||||||||||||||||||||||||||||
go to top | ||||||||||||||||||||||||||||||||||||
2.1 Chrysoperla predators are mass multiplied in laboratory at 27 ± 10C and 70% RH on the eggs of Corcyra cephalonica, a laboratory host. Three days old 120 chrysopid eggs are mixed with 0.75 ml Corcyra eggs (the embryo of Corcyra eggs are inactivated by keeping them at 2 feet distance from 30 watt ultraviolet tube light for 45 minutes) in a plastic container. On hatching, the larvae feed on the contents of eggs. The second and subsequent instars are reared individually in cells of louvers on the eggs of C. cephalonica. It is assumed that for rearing 100 larvae (1cc) C. cephalonica eggs are required. Host eggs are provided twice during the course of larval rearing. First feeding of 1.75 ml for 100 larvae and second feeding of 2 ml for 100 larvae with a gap of 3 to 4 days is provided. Cocoons formed in the cells are collected after 24 hours. The cocoons are placed in oviposition cage for adult emergence (Photograph-1). In each oviposition box roughly 20 pairs can be accommodated and inside portion of the container is covered with black paper on which adults lay eggs. The adults in the oviposition boxes are provided with castor pollen, protinex mixture (equal volume of protinex, fructose, honey and powdered yeast dissolved in small quantity of water), 50% honey and drinking water in cotton swab. Adults lay eggs on the under surface of the top lid which is removed by sliding a clean lid. After 24 hours of hardening the eggs are gently brushed with a brush to dislodge on to a paper eggs are collected and either reused for mass multiplication or sent to farmers for field release. Only first instar larvae are released on to the recommended crop plants. 3. Major equipment required Facilities like rearing room (6 x 6 m), slotted angle iron racks, work tables, plastic louvers 60 x 22 cms with 2.5 cm cubical cells, acrylic sheets to cover the louvers, glass vials, adult oviposition cages (45 x 30 x 30 cms), plastic louvers, plastic containers, scissors and brushes, cotton wool, tissue paper, sponge, fructose, protinex, honey, yeast, castor pollen etc. are required for the mass rearing of chrysopids. 4. Dosage At least 1000 eggs or larvae may be used per acre. C. Australian ladybird beetle (Cryptolaemus montrouzieri) 1. Importance 1.1 Mealybugs are serious pests on fruits, vegetables, ornamentals and plantation crops. Besides causing direct loss to the plants they also reduce market value of infested fruits. The extent of damage may go upto 70 percent in severe infestation. Lady bird beetle, Cryptolaemus montrouzieri introduced from Australia is a potential bio control agent and is being utilized on many crops in Southern India. 1.2 Mealybugs or scale insects constitute the natural food of certain ladybird beetles. The adult beetles as well as their larvae (grubs) seek the pests and feed voraciously on all stages. They often wipe out the entire pest colonies. The lady bird beetles are being used for suppression of mealy bugs in citrus, coffee, grapes, guava, ornamental and a variety of other crops. 2. Equipment needed Equipments like wooden boxes/cages, iron rack, buckets etc. are needed for mass multiplication of ladybird beetles. 3. Production Technology The production involves the following steps:
The Beetles can also be reared on corcyra cephalanica eggs but empty ovisacs of Planococcus citri are to be kept for inducing egg laying by the beetles. 4. Field release and application Before releasing in the field in the endemic areas, moderate to severely infested plants are marked. The plant trunks are ringed one foot away with a band of 5% diazinan granules 24 hrs before the release of the beetles; this stops the patrolling of ants on the trunk atleast 3 days. On citrus 10 beetles per infested plants are released but on other crops the releases are calculated based on infestation and crop canopy.
5. Precautions The important precautions are given below:
D. Production of Ha NPV and SI NPV 1. Introduction 1.1 Baculovirus group have a very narrow host range and generally infests the larvae of crop pests. The research aimed at insect pest control is, therefore, confined to nuclear polyhedrosis viruses (NPVs) and granular viruses (GVs). 1.2 NPV is a nucleic acid (double standard, circular DNA) enclosed in protein matrix, hence it is called polyhedral occlusion body (POB). NPV infects the nucleus of the cell and multiplies within the nucleus. 1.3 In India, extensive research has been conducted on the use of NPVs for tackling two major pests namely Spodoptera litura and Helicoverpa armigera. 1.4 Nuclear Polyhedrosis viruses like Ha NPV, SINPV are increasingly being used as alternatives to chemicals. These viruses have distinct advantages over other methods of pest control. NPVs are virulent pathogens of insect characterised by the polyhedral occlusion bodies (POB). These viruses are highly specific and do not affect beneficial insects like parasitoids and predetors and are safe to fish, birds, animals and man. Considering the usefulness of NPV's there has been a growing demand amongst the farmers for these bioagents. 2. Major equipment required The major equipments like centrifuge, laminar flow, magnetic shaker, microscopes, autoclave, coolers, refrigerators, incubator, distillation units etc. are required in addition to glassware, plastic trays, basins, iron racks for mass production of Ha NPV and SI NPV. 3. Spodoptera litura (Tobacco Caterpillar) Spodoptera litura commonly known as tobacco caterpillar, is a polyphageous pest. It is a serious pest of tobacco nurseries and also a sporadic pest of cauliflower, cabbage, castor, cotton, groundnut, potato and lucerne. It causes serious crop losses. 4. SI NPV The virus is specific and infects only Tobacco Caterpillar. NPV can be successfully multiplied on tobacco caterpillar and the viral extraction can be applied in the field to control the caterpillar. For continuous production of SI NPV, it is necessary to rear Tobacco Caterpillar larvae continuously in a lab condition. 5. Gram pod borer (Helicoverpa armigera) It is widely distributed in India and infests/damages a variety of cultivated and wild plants throughout its distribution range. It is a serious pest on commercial crop like cotton; pulses like redgram and bengalgram; vegetables like tomato, bhendi and dolichos bean; oilseeds like sunflower, soybean and safflower and cereals like sorghum and maize. 6. Ha NPV Ha NPV is a highly infective microbial biopesticide which can be used to control Gram borer. It is derived from naturally diseased or under laboratory conditions artificially infected larvae of gram borer. 7. Mass production of Ha NPV and SI NPV 7.1 The mass production of Ha NPV and Si NPV involves 3 steps
The schematic representation depicting production and application of NPV is presented in Exhibit-II. | ||||||||||||||||||||||||||||||||||||
go to top | ||||||||||||||||||||||||||||||||||||
7.2 Details of mass production 7.2.1 Diet preparation The larvae ofGram pod borer and Tobacco caterpillar can be multiplied by using chick pea based semi-synthetic diet. The composition of the diet for rearing larvae is as follows:- | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
390 ml of water is mixed with fraction 'A' of the diet in the blender which is run for two minutes. Fraction 'A' and 'C' are mixed and the blender is run again for 1 minute. Fraction 'B' is boiled in the remaining 390 ml water, added to the mixture of A and B and the blender is run for a minute. Formaldehyde solution is added at the end and the blender is again run for a minute. 7.2.2 Mass production of eggs Tobacco caterpillar The culture of Tobacco caterpillar is initiated by collecting eggs from the fields of castor, cauliflower, lucerne, tobacco etc. These field collected eggs are reared in isolation to eliminate the emerging parasitoids and diseases, if any. The culture can also be established by collecting the gravid females with the help of light traps. Once the pure culture is established the mass production is commenced under laboratory conditions after the first generation established. Pairs of newly emerged moths of Tobacco caterpillar are placed in well ventilated plastic containers. The inner wall of the containers is lined with paper to enable the adults to lay eggs. The bottom of the container is lined with sponge covered over by blotting paper. The moths are provided with 50% honey solution and water on two cottons swabs placed in small plastic cups. The eggs which are generally laid in batches on the paper are cut out. Freshly laid egg masses are sterilised by dipping in 10% formalin for 30 minutes, washed in running water for 30 minutes, dried on blotting paper and kept for hatching in sterilised glass vials. The freshly laid eggs can also be surface sterilised in 0.05 percent solution of sodium hypo chlorite for 5 minutes. These eggs are washed several times in running tap water to remove the traces of sodium hypo chlorite. The traces of sodium hypo chlorite could be neutralized by dipping the eggs in 10% sodium thiosulphase solution and again the eggs are washed thoroughly under running tap water. The surface sterilised eggs are kept in plastic tubes (7.5 x 25 cm) on moist tissue paper for continuing the stock culture. After 3 days, the newly hatched larvae are transferred to bouquets of castor leaves and kept in a plastic container with stand for pupation. The pupae are collected 3 days after all the larvae enter the sand. The pupae are sexed and kept on a lid over a wet sponge in adult emergence cage. After 10 days, freshly emerged males and females are collected from their respective emergence cages. Tobacco caterpillar larvae can be multiplied on a chickpea based semi-synthetic diet composition and preparation of which is detailed under point 7.2.1. Gram pod borer (Helicoverpa armigera) The culture of Gram borer is initiated either collecting the adults with the help of light traps. It could be by collection of larvae on a large scale from its host crops in endemic areas. Nucleus culture can also be obtained from the established laboratories. The material thus obtained is reared in the laboratory in aseptic conditions and the healthy progeny is selected and established. The production starts with the availability of 250 pairs of adults every day, which will yield 10,500 eggs daily. The adults are kept @ 100 pairs in each oviposition cage with a cloth enclosing the frame. A circular plastic mesh (on which cotton swabs soaked in water and honey solution are placed in small containers) rests on a support above the base of the frame. The cloth cover is open at both ends with a 20 cm vertical slit in the centre which can be closed with a zip or cloth clips. The cloth cover enclosing the frame is tied with rubber bands at both ends. It is placed on tray with a sponge at the bottom soaked in water. The temperature inside the cage is maintained at 260 C and humidity at 60 - 90%. The eggs are laid all over the inner surface of the cloth cover. The egg cloth is removed daily. This cloth is surface sterilised in 10% formalin for 10 minutes, the eggs could also be surface sterilised using 0.2% sodium hypchlorite solution for 5-7 minutes and treated with 10% sodium thiosulphate solution to neutralise the effect of sodium hypo chlorite, rinsed in distilled water. The eggs are later placed on paper towell under laminar flow for drying. The dried cloth pieces containing eggs are kept in 2 litre flasks containing moist cotton. Flasks are plugged with cotton wrapped in muslin cloth and the bottom of the flask is wrapped with aluminium foil. | ||||||||||||||||||||||||||||||||||||
7.2.3 Rearing of larvae on semi-synthetic diet Tobacco caterpillar Stage - I (rearing of early instar larvae): The rearing unit is prepared by placing a sponge piece on a glass sheet. The sponge is covered with a single layer of soft tissue paper. A small plastic container containing 200 surface sterilised eggs of Tobacco caterpillar is placed in the centre over the tissue paper. A petri dish containing about 200 ml of diet is placed inverted over the tissue paper. The eggs hatch within 25 hr and neonate larvae crawl and spread out on the diet. Stage - II (rearing of late instar larvae): Late instar larvae are reared in a modified plastic boxes. One window each on the four sides of the box is cut and covered with a fine plastic mesh to provide sufficient ventilation and to prevent moisture accumulation inside the box. A thick layer of sterilised sand is spread at the bottom of the box. A small piece of tissue paper is kept at the centre over the sand. The diet in the petri dish (containing 200 larvae) is divided into five equal pieces. One piece of diet bearing 40 larvae is kept in plastic box over the tissue paper so that the sand does not soil the diet. In this way, 5 boxes are charged with larvae from 1 petri dish. A plastic grill is fitted into the box in such a manner so that it forms a crest higher than the brim of the box. Thick cake of diet (about 500 gm) in a petri dish is divided into two equal pieces. One such piece is kept on the top of the crest and the lid of the box is then fixed so that the diet and grill crest are opposed to each other just beneath the lid. After consuming the small quantity of diet on tissue paper the larvae crawl and perch on the grill and feed from the ceiling of the box. The boxes are stacked and left intact for 3 days. During this time the diet is almost completely consumed. Now another piece of fresh diet (about 250 gm) is kept on the crest in each box and the boxes are closed and stacked again. During the last 3/4 days of larval stage the food consumption is maximum and so is the fecal matter accumulation on the sand layer. After 20 days from hatching the larvae move into the sand and start pupating. In a period of 25 days, all the larvae, pupate and the chitinisation of pupae is also completed. The boxes are now ready for the pupal harvest. The pupae are collected, cleaned, sterilised and placed in adult emergence cages. The freshly emerged moths are then placed in oviposition cages. Gram borer The larvae of gram borer can also be reared on a chickpea based semisynthetic diet as detailed under point 7.2.1. The diet is poured as per the requirement either on the nylon mesh for rearing 5-7 day old larvae or in tray cells for rearing the older larvae or poured into sterilised petri plates and allowed to solidify. The diet could be stored in the refrigerators for upto 2 weeks. For preparing large quantities of diet, the quantity of diet ingredients to be used should be calculated accordingly and industrial type waring blenders could be used. The larvae are removed from the top of the aluminium foil wrapped flasks with a brush and then transferred to the diet. 220 larvae are transferred to diet impregnated on nylon mesh and placed in plastic containers or sterilised glass vials. 100 such containers are maintained daily for 5-7 days. Multi-cellular trays with semi-synthetic diet is advantageous for rearing a large number of larvae. Starting with 10,500 eggs, the total number of larvae available is 10,000 considering an estimated 5% mortality in initial 5 days of emerging and 10% mortality upto first 5 - 7 days. The total number of larvae available for virus production is 8000 (80%). The rest of 20% will be utilized for maintenance of host culture continuously. The diet requirements at various stages of production of larva are:
In host culture units, larvae start pupating when they are 18-19 days old and the pupation will be over within 2-3 days. The harvested pupae are surface sterilised using 0.2% sodium hypo chlorite solution followed by washing with 10% sodium thiosulphate solution to neutralize sodium hypo chloride and then washed thoroughly with distilled, sterilised water. After washing, the eggs are dried by rolling over blotting paper. The male and female pupae are separated out and placed over moist sponge in adult emergence cages. The egg, larval, pupal and adult stages of gram borer last 3-4, 18-29, 7-8 and 7-9 days respectively. The oviposition period of the females is about 5 days. 7.2.4 Production of Helicoverpa armigera NPV (Ha NPV) and Spodoptera litura NPV (SI NPV). For Ha NPV and SINPV production, the synthetic diet prepared is poured at 4gm/cell in the multi-cavity trays and the diet surface is uniformly sprayed with virus prepared in distilled sterilised water at 18 x 106 POBs / ml. Eighty percent of the total 5-7 day old larvae are utilised for Ha NPV and SINPV production. The trays are incubated at 260 C for 7 days. In case of virus infected larval trays, the diseased larvae dies after attaining its maximum size of 6th instar, where the dead caterpillar will have 2-6 billion poly occlusion bodies (POB) which is in terms of larval equivalent (LE). 1 LE of H.armiegera NPV = 6 x 109 POBs; 1 LE of S. litura = 2 x 109 POBs. The dead larvae have to be harvested, macerated in distilled/sterilised water and filtered through muslin cloth to get the crude suspension of the virus. The extraction is centrifuged to further clarify the solution. 8. Other Important Aspects 8.1 General precautions to be followed while maintaining host cultures | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
4. Dosage Talc based formulations of the fungal antagonists are applied at the rate of 4gm per kg of seed for controlling soilborne plant diseases. Mix the powder with sufficient quantity of water to make slurry for treating seed before sowing. 5. Advantages of Trichoderma applicatiom
6. Application 6.1 Soil application Trichoderma spp. suppress the activity of soil borne fungal pathogens, especially Rhizoctania solani and Pythium spp. and protect transplanted seedlings by colonizing their roots. 6.2 Seed treatment Seed treatment is an alternative approach to introduce Trichoderma spp. into the soil. This method requires smaller amounts of biological material than soil treatment. Unlike chemical fungicides, Trichoderma spp. provide long term protection without any adverse side effects. F. Sex pheromone traps of Helicoverpa armigera and Spodoptera litura 1. Introduction 1.1 Sex pheromones are single or complex blend of different chemicals released by one insect to attract the opposite sex of the same species. In general, females (especially the moths) emit sex attractants to attract males for mating. Sex pheromones are artificially synthesized in the laboratories and supplied as sex pheromone lures. Such pheromones are placed in the field to attract trap and kill the males, thus matting is not allowed. Hence, sex pheromone traps can be considered as a key component in Integrated Pest Management (IPM). 1.2 Ready-to-use Sex pheromone lures and traps are available for Helicoverpa armigera (attacking crops like cotton, redgram, tomato, okra, sunflower, chillies, maize, sorghum etc.) and spodoptera litura (attacking crops like tobacco, groundnut, sunflower, cotton, cabbage, beetroot, cauliflower, etc.) 2. Advantages of pheromone lures
3. Equipment needed Only micropippets are required in addition to rubber septas, traps and pouches. 4. Production of Pheromone Traps Sex pheromones are insect specific, produced artificially in laboratories and they are generally imported. In India, it is available from National Chemical Laboratory (NCL), Pune. Chemicals obtained from laboratory is diluted to the required dosage and filled into plastic lures with the help of micro pippets and closed with rubber septa. Lures are individually sachet packed and should be stored under refrigerated conditions when not in use. 5. Field application Lures containing sex pheromones are placed into insect trap and erected in the field at a recommended spacing. The lure will release the sex pheromane at a constant rate over a period of 2-4 weeks. Male months are attracted and while attempting for matting, fall into a container having pesticide. Thus the female moths in the field are deprived of successful mates and fail to reproduce or lay viable eggs. 6. Dosage Timely use of sex pheromone helps in early detection and prompt action against pests. In general, 2-3 traps / acre are recommended for 'monitoring' or more for 'mass-trapping'. These are arranged such that the trap is 1-2 feet above the crop canopy. On the field each lure is effective for atleast 15 days. Change the lures once in two weeks. Exhibit I | ||||||||||||||||||||||||||||||||||||
go to top | ||||||||||||||||||||||||||||||||||||
Mass Production of Trichogramma spp. | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
Exhibit II Mass production & Application of Nuclear Polyhedrosis Virus | ||||||||||||||||||||||||||||||||||||
| ||||||||||||||||||||||||||||||||||||
PREM DUBEY-Chairman(Jabalpur Chamber of Commerce) A Platform for Entrepreneurs!
Thursday, 17 November 2011
Start a Biopesticide manufacturing Unit
Subscribe to:
Post Comments (Atom)
START A BUSINESS OF HERBAL LASSI
START A BUSINESS OF HERBAL LASSI INTRODUCTION Lassi, as such has very good nutritional value. Lassi is considered to be even b...
-
(202) Start a Marble Tiles Manufacturing Plant Polished marble tiles manufactured out of natural marble blocks of diffe...
-
(197) Start a Cement concrete tiles and paving blocks Plant 1) Product & Applications Cement concrete tiles and pavin...
This comment has been removed by the author.
ReplyDeleteViele Probleme, mit denen die Personen im Haus aufgrund von Insekten konfrontiert sind, sowie Kammerjäger ist die Person, die durch die Verwendung umweltfreundlicher Produkte die Insekten aus der Residenz reduzieren kann. Ein erfahrener Kammerjäger und Haustiere kann innerhalb kürzester Zeit hervorragende Ergebnisse erzielen . Jeder kann auf der Website nach vollständigen Informationen über den Kammerjäger suchen .
ReplyDeleteI am really impressed with your blog article, such great & useful knowledge you mentioned here. Your post is very informative. I have read all your posts and all are very informative. Thanks for sharing and keep it up like this.
ReplyDeleteEDTA Chelated micronutrients
Thanks for sharing such beautiful information with us. I hope you will share some more information about potassium phosphonate fungicide manufacturer in nashik. Please keep sharing.
ReplyDeleteThanks for sharing this useful information.
ReplyDeletePest Control Service
I wanted to thank you for this great read!! I definitely enjoying every little bit of it I have you bookmarked to check out new stuff you post.
ReplyDeletepotassium phosphate manufacturer in maharashtra
As per study added by Value Market Research Biopesticides are an organic pest control that is produced by using organic or naturally occurring substance, for instance plants, biochemical and microbes. The most commonly used products are boherbicides, bioinsecticides and bio fungicides. Noteworthy growth in the agriculture sector coupled with rising trend of organic farming practices, act as a key factor driving the market growth. See More @ https://www.valuemarketresearch.com/report/biopesticides-market
ReplyDeleteThis comment has been removed by the author.
ReplyDeleteThis comment has been removed by the author.
ReplyDeleteThank you for sharing this useful information.
ReplyDeleteAir Assisted sprayer
Tractor Mounted sprayer
Tractor Trailed Sprayer